
Cell Noise and Processing

Abstract
The cell noise, discovered by Steven Worley, has
potential to be an important tool in creating elec-
tronic art. Implementing it in the Processing en-
vironment will hopefully result in a wider use of
cell noise. How to convert it into Java/Processing
and simple usage of the noise is described in this
paper, along with some brief introduction to what
cell noise is. A lot of effort has been put into pro-
moting the cell noise library to Processing users,
and the most important result of the project, next
to the library, is the web page describing the cell
noise.

Introduction
Processing is a development platform for visual
arts, developed by Casey Reas and Ben Fry. It is a
open source projekt soon to be released in its fi rst
non-beta version. The environment is built up by a
core, containing the basic tools for creating visual
arts. Besides the core there is the posibility for each
user to add libraries containing extended tools.
This report describes the process and the result of
the development of such an add-on library.

The project is done in the scope of the university
course Proceedural methods for images at the
Linköping University, Sweden. It is also intended
to be used by developers and artists in the
Processing environment.

The library is an implementation of a method for
creating cell noise described by Steven Worley in
Texturing & Modeling – A Procedural Approach.
The implementation is a modifi cation of the code
described on page 149 an forward.

Cell Noise
The basic idea of cell noise is to spread a varying
number of feature points in space and calculate
the distances to these points from every possible
point in space. This can then with success be used
to simulate, among many things, cell-like struc-
tures. As a complement to this basic idea, Worley
describes ways to connect each feature point with
a unique ID number. This number can be used to
generate a surface with solid colored areas, look-
ing a lot like military canvas or glass mosaic, de-
pending on the coloring function.

Figure 1 describes a space with feature points
scattered across the plane. For a position on the
plane, the x in the fi gure, there is always a closest
feature point. There is a second closest as well as
a third and so on. The algoritm searches the plane
to fi nd them and returns the distance, the relative
position and the ID number of each feature point.

Shown in fi gure 1 are also the integer lines of
the plane, that is where the positions are integers
in any dimension. The integer squares (cubes
in three dimensions) are central in the algoritm.

Figure 1. The feature point spread of a typical
cell noise. Sample point marked with x.

Carl-Johan Rosén, Linköping University, 2006

1

When we want to know the distance to the two
feature points closest to the point (3.6, 5.7) we
start by looking at the integer square (3, 5) and
compare its feature points to each other to fi nd the
closest. Let’s say that the point (3.6, 5.7) is the x
in fi gure 1. It’s obvious that the two feature points
in that square aren’t the two closest. One of them
is, but the second closest belongs to the integer
square (3, 6).

This is no problem using the algorithm by Wor-
ley. Having found the feature points in square (3,
5) the algorithm goes on to compare the position
with its integer borders, to determine if it’s even
possible that there is a closer feature point in the
adjacent squares. As seen in fi gure 1, where the
distances to the two points of the center square
are marked, it’s only possible to fi nd closer feature
points in the squares (4, 5), (3, 6) and (4, 6). Only
these squares have to be searched. The benefi t of
this is effi ciency. The integer line comparison is
extremely fast compared to the in-square search.

Since the number of feature points to search for
is variable, the number of squares having to be
searched varies. The number of feature points in
each square is set in the algorithm to be between
none and fi ve, and average to 2.5.

For more information on the cell noise algorithm
see Texturing & Modeling – A Procedural Ap-
proach, as mentioned above, or the paper A cellu-
lar texture basis function by Worley, 1996. There
he lays out the principles of cell noise, in both text
and example code.

Processing
Processing was released in its fi rst beta version In
April 2005 and has since drawn enormous atten-
tion considering it not yet beeing released in an
offi cial stable version. It is already used in educa-
tion at many universities around the world, both
for teaching art and technology.

Processing is built on Java, but offers a simply-
fi ed syntax to the users new to programming. In

fact it is possible to write code in three different
levels, where the simplest one takes practically no
time to create simple screen output in. The levels
above (or below, depending on how you see it)
are more complex, but also allows more control.
None of these levels is as complicated as standard
Java code, and doesn’t offer the same control. But
for the tasks Processing is intended to perform its
simplicity and level of control is well suited.

When an animation or a process is ready it is ex-
ported to an applet or an application by a simple
click on the expoert button. No preferences has to
be set. The applet is complete with a html-page
and can simply be copied to a web server, or run
locally. Applications are exported for Mac OS X,
Windows and Linux.

Developers can distribute their work as libraries
to be included with projects. These libraries are
written and compiled as a normal Java program,
and packed into a .jar archive. The Processing
environment recognizes libraries if placed in the
correct directory and a user can then easily import
the library to create visualizations.

For a deeper understanding of what Processing
is, how to use it and to download the software,
I recommend processing.org, where both texts,
code and examples can be found. There is even
a gallery of animations and interactive processes
created with Processing.

Extensions of the original code
The fi rst and most obvious change to the original
code was to interpret the original code from C to
Java. Since some of the types and functions used
didn’t exist in Java, they had to be converted into
their Java equivalents.

Modulo as integer overfl ow

The most complicated part was to convert the use
of unsigned integer overfl ow in C to something
similar in Java. Since Java doesn’t handle un-
signed integers, signed data types had to be used.

2

But unsigned 32 bit integers handle larger num-
bers than signed, so the 64 bit integer long type
was used in combination with a modulo operation.
The function u32() was added to the main class,
converting a 64 bit signed integer to what it would
have been if it where a unsigned 32 bit integer.

CellDataStruct as pointers

Since Java doesn’t handle pointers the class Cell-
DataStruct is used to pass data to, from and
between the functions in the main class. The
CellDataStruct together with the main class (Cell-
Noise) are the two parts of the cell noise package
as visualized in fi gure 2. CellDataStruct contains
public variables representing all variables passed
to and from the main function (named Worley) in
the original code.

This class allows using variables as pointers, and
not allocating new memory all the time. What we
loose is a bit of structural overview, but winning
effi ciency. During the process only one instance
of the class is instanciated, but the variables are
constantly changed.

Distance measures

As seen in fi gure 2, there are public constants rep-
resenting different distance measures available to
determine which feature points are closer. The de-
fault one, euclidean, is one of four available. The
others are city block, manhattan and quadratic
distance. Depending on the distance measure, the
visualizations character changes.

The main problem with different distance mea-
sures is that they usually are quite heavy on the
CPU. Except for speed there is nothing hinder-
ing devellopers to add more complicated distance
measures, like weighted measures.

Three and Two dimensions

In the original code there is only one noise func-
tion and it’s for three dimensions. Since fl ow in
the animation and frame rate is of great impor-
tance in the Processing environment, an extra,
simpler, noise function was added. It considers
only two dimensions, but still maintain much of
the cell like appearence. It is about 2 times faster
than the three dimensional noise function using
euclidean distance measure.

�����������������

��������� ��������������

����������������
������������
��������������������

�����������������
��������������
����������������
��������������
��������������

����������������
�����������
�����������

�����������������
��������������������
��������������������

����������������
����������������

����������������
�����������
����������
��������
���������
������������������
�����

Figure 2. Class structure of the CellNoise library. Figure 3. The feature point spread.

3

Figure 5. Second order distance.

Point spread

Figure 3 visualizes the spread of the feature points
in two dimensions. It’s based on a very simple
formula where the color of the pixels vary linear-
ly with the distance to the nearest feature point.
A part of the code, where the coloration is done,
looks like this:

cd = CellDataStruct(
 this,
 1,
 at,
 cn.EUCLIDEAN
);
...
cn.noise(cd)
pixels[x + y*width] = color(
 255,
 ((fl oat)cd.F[0] * 2560),
 ((fl oat)cd.F[0] * 2560),
);

First order distance

In fi gure 4 it’s fairly obvious why this kind of
noise is called cell noise. This is one of the most
basic transformations of a distance measure to a
color (in this case not even a color, but a grayscale
value). The code for this looks like:

cd = CellDataStruct(
 this,
 1,
 at,
 cn.EUCLIDEAN
);
...
cn.noise(cd)
pixels[x + y*width] = color(
 (fl oat)cd.F[0] * 350
);

Second order distance

This is a linear mapping of the distance to the sec-
ond nearest feature point on a gray scale. Com-
pared to the fi rst order distance, this has a more
abstract look. But still very interesting. Code be-
low:

Examples
Here are some examples to show the diversity of
possible interpretations of the feature point po-
sitions. Some are very simple and illustrates the
character of the noise, while some other are more
extravagant. But I’m sure there are both more and
less extravagant patterns to be explored.

Figure 4. First order distance.

4

cd = CellDataStruct(
 this,
 1,
 at,
 cn.EUCLIDEAN
);
...
cn.noise(cd)
pixels[x + y*width] = color(
 (fl oat)cd.F[1] * 120
);

First and second distance difference

This is the plot of the difference between the dis-
tance to the second order feature point and the
distance to the fi rst. It creates this iceberg-like
structure.

cd = CellDataStruct(
 this,
 1,
 at,
 cn.EUCLIDEAN
);
...
cn.noise(cd)
pixels[x + y*width] = color(
 (fl oat)(cd.F[1]-cd.F[0]) * 120,
 (fl oat)(cd.F[1]-cd.F[0]) * 120,
 (fl oat)(cd.F[1]-cd.F[0]) * 30
);

Fractal multiplication

Using many sets of noise generations and multi-
plying them renders a interesting cell like struc-
ture. As is visible in the code, there are many
parameters available to adjust. Also see the ani-
mation of this pattern on the web page.

cd = CellDataStruct(
 this,
 1,
 at,
 cn.EUCLIDEAN
);
...
cn.noise(cd)
double sum = 1;
for (int i = 0; i < 4; i++) {
 at[0] = 0.01*(i*2+1) * (x+20);
 at[1] = 0.01*(i*2+1) * (y+700);
 cd.at = at;
 cn.noise(cd);
 sum *= (cd.F[0]);
}
pixels[x + y*width] = color(
 (fl oat)(sum)*255
);

Figure 6. First and second distance difference.

Figure 7. First and second distance multiplied.

5

ID number coloring

Each feature point has a unique ID number. Using
the ID number of the closest feature point as the
color value renders a mosaic of color areas. In this
case the manhattan distance measure is used to de-
termine which feature point is the closest.

cd = CellDataStruct(
 this,
 1,
 at,
 cn.MANHATTAN
);
...
cn.noise(cd);
pixels[x + y*width] = color(
 (cd.ID[0] % 255),
 (cd.ID[0] % 155),
 (cd.ID[0] % 100)
);

Noisy noise

Letting the noise decide the amplitude of another
noise will generate something like fi gure 9. Or
something compleately different. This is a pattern
discovered by chance by combining one noise
result with another, letting the frequency of the
second noise be dependent of the fi rst. In code it
looks like this:

cd = CellDataStruct(
 this,
 1,
 at,
 cn.EUCLIDEAN
);
...
cn.noise(cd)
at[0] = 0.01*cd.F[0] * (x + 20);
at[1] = 0.01*cd.F[0] * (y + 700);
cd.at = at;
cn.noise(cd);
pixels[x + y*width] = color(
 (fl oat)(cd.F[1])*150,
 (fl oat)(cd.F[0]+cd.F[1])*50,
 (fl oat)(cd.F[0])*10
);

I imagine this looking really nice beeing animat-
ed. But i was not able to try it since my computer
managed only a framerate way too low.

Lines and gravity

This example, fi gure 10, is a very good example
on how cell noise can be used in Processing in a
less conventional way. Here it’s not used to gener-
ate a texture, but rather as a gravity fi eld. Lines are
shot randomly into the frame using the random()
function in Processing. Of course the cell noise
function could have been used for this as well,

Figure 8. ID number coloring.

Figure 9. Noisy noise.

6

but I like the fact that the animation is new every
time. The code for this animation is too long to put
in this report, but both the code and the animation
are available on the web page.

Promoting the library
One part of this project is to promote the use of
the cell noise in the Processing environment. The
most effi cent means of promotion for something
like a Processing library is probably a web page. A
web page including background theory, interest-
ing images and patterns combined with explana-
tions and code. Such a web page has been set up at
www.student.itn.liu.se/~carro360/processing.

On the page users will fi nd the examples described
above plus a few more. They are also viewable,
together with its code. Users can read about the
theory of cell noise, see the library code along
with the original code by Worley.

Listed at processing.org are some of the basic processing.org are some of the basic processing.org
tools for generating graphics. Often with good
examples and cool animations. It’s probably not
easy, as a new developer, to get the opportunity
to add a tool, but the cell noise library is sent to
the main developer for consideration. Hopefully

Figure 10. Lines and gravity.

he’ll fi nd it interesting enough to put it up at the
processing.org/reference/libraries.

But there is also a public forum for diskussion
at processing.org/discourse. The forum is full of
lively diskussions about tools and techniques used
by artists and developers. The cell noise now has
its own thread in the forum describing its advan-
tages and will hopefully be shown interest.

Discussion
The project has been very interesting and I be-
lieve Processing is a good environment to explore
the possibilities of cell noise in. If developers and
artists can be brought to understand the noise I
think they will take it places we didn’t know it
could go.

The problem, and I will continue that work even
after this project is formally ended, is to spread
the understanding of the cell noise. To not scare
anybody away, I’ve tried to tune down the level
of programming discussions on the web page.
It’s better if the focus is on what the tool can do,
rather than on how it does it.

The promotion of the cell noise library will, as
mentioned, be done at the web page. From now
on I will publish what I do with Processing/Cell-
Noise on that page. My wish is that it will inspire
creative people to make new interpretations of the
cell noise.

Litterature
Ebert, Musgrave, Peachey, Perlin & Worley,
(2003). Texturing & Moduling - A Procedural
Approach. Morgan Kaufmann Publishers. Third
edition.

Fry, Ben & Reas, Casey (2006). Processing
[www] http://processing.org, 10/3 2006.

Worley, Steven. A cellular texture basis function.
International Conference on Computer Graphics
and Interactive Techniques (1996), p. 291 - 294.

7

